Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties
نویسندگان
چکیده
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
منابع مشابه
Morphology, Biochemical and Genomic Diversity of Hexaploid Wheat (Triticum aestivum L.) Varieties in Ethiopia: A Prospective Study
Hexaploid Wheat (Triticum aestivum L.) is one of the most important food cereals grown in many areas worldwide. World population is to increase by 2.6 billion in 2050. Ethiopia is one of the world’s nine countries needed to increase food production. Since few studies on genetic diversity & in adequate evaluation of bread wheat varieties; my objective the project is to study genetic diversity of...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملGenetic Diversity of Bread Wheat (Triticum aestivum L.) Genotypes Using RAPD and ISSR Molecular Markers
The importance of grain cultivation especially wheat is obvious in terms of providing human and animal food and its impact on the economy of human societies. The reduction of genetic diversity in cultivars prevents increasing yields in line with rising demand and consumption. Therefore, it is necessary to improve the compatibility of them and increase their genetic extent. In the current, the g...
متن کاملCharacterization of a Wheat Breeders’ Array suitable for high‐throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum)
Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in ...
متن کاملTranscript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding...
متن کامل